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Bank of Canada EDHEC Business School

A Arbitrage-Free Nelson-Siegel Term Structure Models

This section follows Christensen et al. (2007) and provides a description of the term structure model.

The k = 3 term structure factors are stacked in the vector Ft. Its dynamics under the risk-neutral measure

Q is described by the stochastic differential equation

dFQ
t = KQ(θQ − Ft) + ΣdWQ

t , (1)

where dWt is a standard Brownian motion process. Combined with the assumption that the short rate is

affine in all three factors, this leads to the usual affine solution for discount bond yields. In this context,

CDR show that if the short rate is defined as rt = F1,t + F2,t and if the mean-reversion matrix KQ is

restricted to

KQ =

 0 0 0

0 λ −λ

0 0 λ

 , (2)

then the absence of arbitrage opportunity implies the discount yield function,

y(Ft,m) = a(m) + F1,tb1(m) + F2,tb2(m) + F3,tb3(m). (3)

Figure 1 displays the loadings. These are given by,

b1(m) = 1,

b2(m) =

(
1− exp (−mλ)

mλ

)
,

b3(m) =

(
1− exp (−mλ)

mλ
− exp (−mλ)

)
, (4)

where m ≥ 0 is the length of time until maturity. CDR show that we are free to choose the drift term

under for the dynamics under the historical measure, P,

F P
t+1 = KP(θP − Ft) + ΣdW P

t . (5)
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This relies on a linear specification of the prices of risk. Any choice of θP and KP matrix pins downs all the

price of risk parameters. Note that the first factor has a unit root under the risk-neutral density. Then, as

discussed in CDR, we have that a(m) → −∞ when m → ∞. However, a(m) is small for most maturities.

In particular, at parameter estimates from Table 3 below, we have that a ≈ 0 for short maturities and

a(m) ≈ −1% at a maturity of 30 years. In contrast, we only consider maturities of 10 years or less. If we

assume θQ = 0 to identify the mean of Ft under Q then a(m) is given by

a(m) = −σ2
11

m2

6
− (σ2

21 + σ2
22)

[
1

2λ2
− 1− e−mλ

mλ3
+

1− e−2mλ

4mλ3

]
− (σ2

31 + σ2
32 + σ2

33)

[
1

2λ2
+

e−mλ

λ2
− me−2mλ

4λ
− 3e−2mλ

4λ2
− 2(1− e−mλ)

mλ3
+

5(1− e−2mλ)

8mλ3

]
− (σ11σ21)

[
m

2λ
+

e−mλ

λ2
− 1− e−mλ

mλ3

]
− (σ11σ31)

[
3e−mλ

λ2
+

m

−2λ
+

me−mλ

λ

]
− (σ21σ31 + σ22σ32)×

[
1

λ2
+

e−mλ

λ2
− e−2mλ

λ2
− 3(1− e−mλ)

mλ3
+

3(1− e−2mλ)

4mλ3

]
. (6)
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Figure 1: Factor Loadings Estimated level, slope and curvature factor loadings from the term structure model with liquidity.
End-of-month data from CRSP (1985:12-2007:12).
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B State-Space Representation And Likelihood Function

The term structure factors have the following discretized state equation,

(Ft − F̄ ) = Φf (Ft−1 − F̄ ) + Ωf ϵt, (7)

where ϵt is standard Gaussian, the autoregressive matrix Φ and the covariance matrix Γ are

Φf = exp

(
−K

1

12

)
Ωf =

∫ 1
12

0
e−KsΣΣT e−Ksds. (8)

The transition equation for Lt is given by

(Lt − L̄) = ϕl(Lt−1 − L̄) + σlϵ
l
t, (9)

where ϵlt is standard Gaussian and uncorrelated with ϵt. Then, the model has the following state-space

representation,

(Xt − X̄) = ΦX(Xt−1 − X̄) + ΣXϵt

Pt = Ψ(Xt, Ct, Zt) + νt, (10)

where Xt ≡ [F T
t Lt]

T and Ψ is the (non-linear) mapping of cash flows Ct, bond characteristics, Zt, and

current states, Xt, into prices, Pt. The measurement errors, νt, have diagonal covariance matrix R.

Estimation of this system is challenging since the joint density of factors and prices is unknown. Various

strategies to deal with non-linear state-space systems have been proposed in the filtering literature: the

Extended Kalman Filter (EKF), the Particle Filter (PF) and more recently the Unscented Kalman Filter

(UKF).1 The UKF is described in greater detail in Appendix C. In practice, it delivers second-order

accuracy with no increase in computing costs relative to the EKF. Moreover, analytical derivatives are not

required. The UKF has been introduced in the term structure literature by Leippold and Wu (2003) and

in the foreign exchange literature by Bakshi et al. (2005).

To set up notation, we state the standard Kalman filter algorithm as applied to our model. We then

explain how the unscented approximation helps overcome the challenge posed by a non-linear state-space

system. First, consider the case where Ψ is linear in X and where state variables and bond prices are

jointly Gaussian. In this case, the Kalman recursion provides optimal estimates of current state variables

given past and current prices. The recursion works off estimates of state variables and their associated

1See Julier et al. (1995), Julier and Uhlmann (1996) and Wan and der Merwe (2001) for a textbook treatment. Another
popular approach bypasses filtering altogether. It assumes that some prices are observed without errors and obtains factors by
inverting the pricing equation. In our context, the choice of maturities and liquidity types that are not affected by measurement
errors is not innocuous and impacts estimates of the liquidity factor.
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MSE from the previous step,

X̂t+1|t ≡ E [Xt+1|ℑt] ,

Qt+1|t ≡ E
[
(X̂t+1|t −Xt+1)(X̂t+1|t −Xt+1)

T
]
, (11)

where ℑt belongs to the natural filtration generated by bond prices. The associated predicted bond prices,

and MSE, are given by

P̂t+1|t ≡ E [Pt+1|ℑt] = Ψ(X̂t+1|t, Ct+1, Zt+1), (12)

Rt+1|t ≡ E
[
(P̂t+1|t − Pt+1)(P̂t+1|t − Pt+1)

T
]
= Ψ(X̂t+1|t, Ct+1, Zt+1)

T Q̂t+1|tΨ(X̂t+1|t, Ct+1, Zt+1) +R,

(13)

using the linearity of Ψ. The next step compares predicted bond prices to observed prices and update the

state variables and their MSE,

X̂t+1|t+1 = X̂t+1|t +Kt+1(Pt+1 − P̂t+1|t), (14)

Qt+1|t+1 = Qt+1|t +K ′
t+1(Rt+1|t)

−1Kt+1, (15)

where

Kt+1 ≡ E
[
(X̂t+1|t −Xt+1)(P̂t+1|t − Pt+1)

′
]
= Qt+1|tΨ(X̂t+1|t, Ct+1, Zt+1), (16)

measures co-movements between pricing and filtering errors. Finally, the transition equation gives us a

conditional forecast of Xt+2,

X̂t+2|t+1 = ΦXX̂t+1|t+1, (17)

Qt+2|t+1 = Φ′
XQt+1|t+1ΦX +ΩX . (18)

The recursion delivers series P̂t|t−1 and Rt|t−1 for t = 1, · · · , T . Treating X̂1|0 as a parameter, and setting

R1|0 equal to the unconditional variance of measurement errors, the sample log-likelihood is

L(θ) =

T∑
t=1

l(Pt; θ) =

T∑
t=1

[
log ϕ(P̂t+1|t, Rt+1|t)

]
, (19)

where ϕ(·, ·) is the multivariate Gaussian density.

However, because Ψ(·) is not linear, equations 12 and 13 do not correspond to the conditional ex-

pectation of prices and the associated MSE. Also, 16 does not correspond to the conditional covariance

between pricing and filtering errors. Still, the updating equations 14 and 15 remain justified as optimal

linear projections. Then, we can recover the Kalman recursion provided we obtain approximations of the

relevant conditional moments. This is precisely what the unscented transformation achieves, using a small

deterministic sample from the conditional distribution of factors while maintaining a higher order approx-
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imation than linearization. We can then use the likelihood given in 19, but in a QML context. The QML

estimator is asymptotically normal and it is a strongly consistent estimator for, θ0, the parameter vector

that minimizes the Kullback-Liebler Information Criterion. This hold even if the model is mis-specified

(we use an approximate filter). It may or may not be consistent for particular parameters of interest. Lund

(1997) studies the properties of the QML in a similar problem as ours with a non-linear pricing function

of coupon bonds. Using an iterated EKF technique he shows that the biases associated with the QML are

very small. Christoffersen et al. (2007) show that the UKF improves filtering with respect to EKF.

From White (1982), we have that θ̂ ≈ N(θ0, T
−1Ξ) where θ̂ is the QML estimator. The covariance

matrix is

Ξ = E
[(
ζHζ−1

OP ζH
)−1
]
, (20)

where ζH and ζOP are the alternative representations of the information matrix, in the Gaussian case.

These can be consistently estimated via their sample counterparts. We have

ζ̂H = −T−1

[
∂2L(θ̂)

∂θ∂θ′

]
(21)

and

ˆζOP = T−1
T∑
t=1

(∂l(t, θ̂)

∂θ

)(
∂l(t, θ̂)

∂θ

)T
 . (22)

Finally, the model implies some restrictions on the parameter space. In particular, ϕl and diagonal elements

of Φf must lie in (−1, 1) while κ and λ must remain positive. In practice, large values of κ or λ lead

to numerical difficulties and are excluded. Finally, we maintain the second covariance contour of state

variables inside the parameter space associated with positive interest rates. The filtering algorithm often

fails outside this parameter space. None of these constraints binds around the optimum and estimates

remain unchanged when the constraints are relaxed. Estimation is implemented in MATLAB via the

fmincon routine with the medium-scale (active-set) algorithm. Different starting values were used. For

standard errors computations, we obtain the final Hessian update (BFGS formula) and each observation

gradient is obtained through a centered finite difference approximation evaluated at the optimum.

C Unscented Kalman Filter

The UKF is based on a method for calculating statistics of a random variable which undergoes a

nonlinear transformation. It is based on an approximation to any non-linear transformation of a probability

distribution. It starts with a well-chosen set of points with given sample mean and covariance. The

nonlinear function is then applied to each point and moments are computed from transformed points. This

approach has a Monte Carlo flavor but the sample is drawn according to a specific deterministic algorithm.

It has been introduced in Julier et al. (1995) and Julier and Uhlmann (1996) (see Wan and der Merwe

(2001) for textbook treatment) and was first imported in finance by Leippold and Wu (2003).

Given X̂t+1|t a time-t forecast of state variable for period t + 1, and its associated MSE Q̂t+1|t the
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unscented filter selects a set of Sigma points in the distribution of Xt+1|t such that

x̄ =
∑
i

w(i)x(i) = X̂t+1|t

Qx =
∑
i

w(i)(x(i) − x̄)(x(i) − x̄)′ = Q̂t+1|t.

Julier et al. (1995) proposed the following set of Sigma points,

x(i) =


x̄ i = 0

x̄+
(√

Nx

1−w(0)

∑
x

)
(i)

i = 1, . . . ,K

x̄−
(√

Nx

1−w(0)

∑
x

)
(i−K)

i = K + 1, . . . , 2K

with weights

w(i) =


w(0) i = 0
1−w(0)

2K i = 1, . . . ,K
1−w(0)

2K i = K + 1, . . . , 2K

where
(√

Nx

1−w(0)

∑
x

)
(i)

is the i -th row or column of the matrix square root. Julier and Uhlmann (1996)

use a Taylor expansion to evaluate the approximation’s accuracy. The expansion of y = g(x) around x̄ is

ȳ = E [g(x̄+∆x)]

= g(x̄) + E

[
D∆x(g) +

D2
∆x(g)

2!
+

D3
∆x(g)

3!
+ · · ·

]
where the Di

∆x(g) operator evaluates the total differential of g(·) when perturbed by ∆x, and evaluated at

x̄. A useful representation of this operator in our context is

Di
∆x(g)

i!
=

1

i!

 n∑
j=1

∆xj
∂

∂xj

i

g(x)

∣∣∣∣∣
x=x̄

Different approximation strategies for ȳ will differ by either the number of terms used in the expansion

or the set of perturbations ∆x. If the distribution of ∆x is symmetric, all odd-ordered terms are zero.

Moreover, we can re-write the second terms as a function of the covariance matrix Pxx of ∆x,

ȳ = g(x̄) +
(
∇TPxx∇

)
g(x̄) + E

[
D4

∆x(g)

4!
+ · · ·

]
Linearisation leads to the approximation ˆ̄ylin = g(x̄) while the unscented approximation is exact up to the

third-order term and the σ-points have the correct covariance matrix by construction. In the Gaussian

case, Julier and Ulhmann Julier and Uhlmann (1996) show that same-variable fourth moments agree as

well and that all other moments are lower than the true moments of ∆x. Then, approximation errors
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of higher order terms are necessarily smaller for the UKF than for the EKF. Using a similar argument,

but for approximation of the MSE, Julier and Uhlmann (1996) show that linearisation and the unscented

transformation agree with the Taylor expansion up to the second-order term and that approximation errors

in higher-order terms are smaller for the UKF.

D Data

We use end-of-month prices of U.S. Treasury securities from the CRSP data set. We exclude callable

bonds, flower bonds and other bonds with tax privileges, issues with no publicly outstanding securities,

bonds and bills with less than 2 months to maturity, issues that were 5 years old or more, and observations

with either bid or ask prices missing. Our sample covers the period from January 1986 to December

2009. In the construction of pairs at each maturity, we excluded suspicious quotes that show up as outliers

relative to surrounding quotes. These are given in Table 1. We also exclude CRSP ID #20040304.400000

since its maturity date precedes its issuance date, as dated by the U.S. Treasury. Including any of these

observations do not affect our results significantly.

Table 1: Outliers

The following observations were excluded in the process of constructing pairs of bond prices. These are most likely clerical
errors since they appear as outliers relative to surrounding quotes on the same observation day.

CRSP ID Date

#19920815.107250 August 31st 1987

#19950331.203870 December 30th 1994

#19980528.400000 May 30th 1998

#20011130.205870 October 31th 1997

#20030228.205500 February 26th 1999

#20041031.202120 November 29th 2002
#20070731.203870 May 31st 2006

#20080531.204870 November 30th 2007

A few more observations were excluded when the most recent issue was not special, contradicting the

maintained assumption that bond prices do not increase with age. Before 2008, the only exclusion is CRSP

ID #20130815.204250 since it is never special. In 2008, the most recent 10-year issue is typically not the

most expensive in its maturity group. Table 2 details what bonds were selected for that maturity group in

2008. Note, however, that in each case, the relationship between bond prices and age remained stable for

the other bonds. Is it only the relationship between the few most recent issues that appears to be varying.

E Parameter Estimates

We impose that KP is diagonal but the presence of the off-diagonal elements does not affect our results.

Moreover, CDR show that allowing for an unrestricted matrix KP deteriorates out-of-sample performance.

Σf is lower triangular for identification purposes. Table 3(a) and Table 3(b) report parameter estimates.

For standard errors, we reports two figures, a robust one using both the Hessian covariance matrix and

the outerproduct of the scores, which we call QML, and a second one based on the outerproduct of the
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Table 2: Bond Pairs for the 10-year Maturity Group in 2008

CRSP ID number of bonds forming a pair in the 10-year maturity group from January to December 2008.

Date CRSP ID#
New Old

01/2008 20171115.204250 20170815.204750
02/2008 20180215.203500 20171115.204250
03/2008 20180215.203500 20171115.204250
04/2008 20180215.203500 20171115.204250
05/2008 20180515.203875 20171115.204250
06/2008 20180215.203500 20171115.204250
07/2008 20180215.203500 20171115.204250
08/2008 20180215.203500 20170815.204750
10/2008 20180215.203500 20170815.204750
11/2008 20180515.203875 20170815.204750
12/2008 20180515.203875 20180215.203500

scores only, which we call OP. The first measure probably overestimates the variability2, while the second

one surely underestimates it. Therefore we decided to report both metrics.

In the benchmark model, the estimate of the curvature parameter is λ̂ = 0.6786, when time periods are

measured in years. This estimate pins the maximum curvature loading at a maturity close to 30 months.

Its QML and OP standard errors are 0.0305 and 0.0044, respectively. The results imply average short and

long term discount rates of 3.73% and 5.45%, respectively. Standard deviations of pricing errors are given

by

σr(Mn) = 0.0229 + 0.0284×Mn,

(0.017, 0.0012) (0.021, 0.0006)

with QML and OP standard errors for each parameter. This implies standard deviations of $0.05 and

$0.31 for maturities of 1 and 10 years, respectively. Using durations of 1 and 7 years, this translates into

yield errors of 5.1 and 4.4 bps.

Estimate for the curvature parameter in the model with liquidity is λ̂ = 0.7304 with QML and OP

standard errors of 0.0857 and 0.0043. The standard deviations of measurement errors are given by

σr(Mn) = 0.0227+ 0.0251×Mn,

(0.016, 0.001) (0.0021, 0.0006)

with QML and OP standard errors for each parameter in parenthesis. Then, standard deviations are

$0.048 and $0.274 for bonds with one and ten years to maturity, respectively. Using durations of 1 and

7, this translates into standard deviations of 4.8 and 3.9 bps when measured in yields compared with 5.1

bps an 4.4 bps from the benchmark results. Overall, parameter estimates and latent factors are relatively

unchanged compared to the benchmark model.

2The Hessian is not available in closed-form and a numerical approximation for the second derivative of the entire likelihood
introduces errors.
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Table 3: Parameter Estimates - Transition Equations

Panel (a) presents estimation results for the AFENS model without liquidity. Panel (b) presents estimation results for the
AFENS model with liquidity. For each parameter, the first standard error (in parentheses) is computed from the QMLE covari-
ance matrix while the second is computed from the outer product of scores. End-of-month data from CRSP (1985:12-2007:12).

(a) Benchmark Model

F̄ K Σ (×102)

0.0545 0.169 0.68
Level (0.0136) (0.177) (0.42)

(0.0093) (0.069) (0.03)

-0.0172 0.182 0.76 0.84
Slope (0.0277) (0.088) (0.75) (0.46)

(0.013) (0.071) (0.06) (0.04)

-0.0128 0.891 -0.14 0.41 2.31
Curvature (0.0061) (0.860) (1.86) (1.64) (0.66)

(0.0045) (0.283) (0.15) (0.17) (0.13)

(b) Model with Liquidity

F̄ K Σ (×102)

0.0576 0.198 0.85
Level (0.0165) (0.165) (0.86)

(0.0154) (0.098) (0.02)

-0.0167 0.222 -0.81 0.85
Slope (0.0092) (0.293) (0.85) (0.44)

(0.0165) (0.145) (0.06) (0.05)

-0.0189 0.887 0.57 0.25 2.27
Curvature (0.0057) (1.414) (0.82) (1.91) (1.66)

(0.0088) (0.325) (0.13) (0.20) (0.12)

L̄ ϕl σl

0.32 0.955 0.06
Liquidity (0.42) (0.034) (0.066)

(0.09) (0.021) (0.011)
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F Response of Treasury Yields to Funding Liquidity Shocks

The value of funding liquidity predicts future excess bond returns conditional on the level, slope and

curvature. This raises important questions at the heart of a recent literature on affine term structure models

(e.g. Joslin et al. (2010) and Duffee (2011)). In general, we expect increases (decreases) in expected excess

bond returns to be associated with decreases (increases) in current bond prices to generate potential for

higher returns. This is the same mechanism than the Campbell-Shiller decomposition of stock returns into

news about future cash flows, about futures expected excess returns and about future short rates. (Note

that changes in expected cash flows play no role when we focus on nominal bond returns.) However, in the

context of Gaussian dynamic term structure models, and in the absence of pricing or measurement errors

in yields, the predictive content of any state variable is captured if we include a sufficient number of yields

(or yield factors) in predictive regressions. Observing a sufficient number of linear combinations of prices

reveals all that we need to know about expected excess bond returns.

One exception is the knife-edge case where the higher (lower) term premium is exactly offset by a lower

(higher) future path for the short rate. In this case, some risk factors may affect the risk premium but not

the cross-section of yields. Could it be that Lt is unspanned but affects the price of Ft risk? This possibility

relies on a number of maintained hypothesis about the number of factors, their dynamics, the absence of

friction and linearity. In fact, Duffee (2011) warns not to take the knife-edge restrictions literally. He argues

that some factor may be hard to measure due to distortions on the bond markets. In particular, he points

at sources of small, transitory and idiosyncratic noises.3 In contrast, we introduce small, persistent and

common deviations between old and new bonds. These deviations are computed relative to an idealized

yield curve implied by a frictionless no-arbitrage model. They are hidden from models assuming transitory

and uncorrelated errors and where estimation is based on zero-coupon curves.

Can we reconcile this evidence that Lt predicts risk premium with the underlying frictionless zero-

coupon curve that we estimated? Appendix G introduces a generalized no-arbitrage Nelson-Siegel term

structure model in discrete-time where the state vector is extended to include additional variables. These

variables can have arbitrary loadings and their historical dynamics is unrestricted. It shows that the

predictability from Lt cannot be due to its effect on the prices of Ft risk whenever Ft and Lt shocks

are uncorrelated as we assumed. Allowing for a general correlation and auto-correlation structure opens

interesting cases. Lt may or may not be priced. It may enter the prices of Ft risks. It may play a role

in the dynamics of Ft. It may be a component of the short rate equation. This points toward a detailed

analysis of Lt’s role for Treasury bonds. This is clearly beyond the scope of the paper and we leave these

important questions for future research. Importantly, Section H below shows that we expect the filtered

factors F̂t to capture any contemporaneous effect of Lt on yields whenever we estimate a restricted model

where Lt does not affect yields. This is what latent factor models do after all. This arises if the patterns

of the loadings of yields on Lt across maturities can be obtained (approximately) as a linear combination

3See Duffee (2011), Section 2.7. “First, there are market imperfections that distort bond prices, such as bid/ask spreads.
Second, there are market imperfections that distort payoffs to bonds (and thus distort what investors will pay for bonds),
such as special RP rates. Third, there are distortions created by the mechanical interpolation of zero-coupon bond prices from
coupon bond prices.”

10



of level, slope and curvature loadings.4

In any case, the evidence does not preclude that funding liquidity is spanned by yields. First, PCAs

computed from yields span a substantial share of the filtered liquidity factor variations. Principal Compo-

nents from the Fama-Bliss CRSP files (T-bills rates at maturities of 1, 2, 3, 4, 5 and 6 months. Zero-coupon

yields at maturities of 1, 2, 3, 4 and 5 years) span 47% of funding liquidity variations. PCAs from the

dataset of Gurkaynak et al. (2006) (maturities of 3, 6, 9 and 12 months as well as 1, 2, 3, 4, 5, 7, 10

years) span 54% of the funding liquidity variations. Imperfect spanning (R2 < 1) may be consistent with

measurement errors in yields and filtered estimates of Lt.

Second, although we cannot clean the filtered factors F̂t from the omitted effect of Lt, we can ask what

part of F̂t innovations comes from its innovations in Lt. We use regressions to check the contemporaneous

relationship between bond price changes (i.e. bond returns) computed as rmt+1 = log(D
(m−1)
t+1 /D

(m)
t ) and

innovations in state variables, ϵt+1 = Xt+1 − Et[Xt+1]. Table 4 provides results from contemporaneous

regressions of monthly bond returns on funding liquidity and term structure shocks. Regressors are nor-

malized for ease of interpretation. We also include lagged state variables, Lt−1 and Ft−1, as conditioning

information. The evidence is unambiguous. An unexpected shock to the value of funding liquidity is

associated with positive bond returns contemporaneously. For a 10-yr bond, a shock to funding liquidity

is associated with a 0.3% monthly returns. One interpretation is that Treasury bonds provide a hedge

against funding liquidity shocks. Consistent with predictability regressions, this higher current value of

funding liquidity is associated with lower expected returns in the future. This holds for every maturity we

considered. Coefficients of lagged term structure factors and of their innovations have the expected sign.5

Note that inclusion of lagged factors does not affect point estimates for innovation coefficients since these

two sets of regressors are uncorrelated by construction. Instead, this makes inference more reliable since a

short-window kernel can then be used for the purpose of computing Newey-West standard errors.

The results are based on a joint VAR dynamics for the term structure and liquidity factors. We identify

Xt shocks via the Cholesky decomposition of their covariance matrix where Lt is ordered before the term

structure factors.6 This decomposition let the data speaks about the correlation between innovations. In

contrast, any other ordering precludes the effect of innovations to L̂t on some or all aspects of yield changes

by assumption. There is no reason, a priori, that shocks to the funding liquidity factor do not affect term

structure factors. Whether it does is an empirical question. The VAR dynamics was re-estimated from

4If this is not the case, the effect of Lt (or any other missing factor) on yields is likely to be small since yield variations can
be accurately described in term of level, slope and curvature changes.

5Coefficient estimates imply that Level shocks are associated with a -2.57% returns for a 10-year discount bond. Slope and
Curvature shocks are associated with -0.39% and -0.68% returns, respectively. Coefficient estimates on lagged term structure
factors are positive and significant (i.e. 0.57, 0.07% and 0.18%). This is consistent with the observation that low returns today
imply higher expected future returns. Unsurprisingly, term structure factors explain a large proportion of yield variations
since the estimates maximize the likelihood of observed yields. Their t-statistics in yield changes regressions are necessarily
large and are not reported to preserve space.

6The paper considers a restricted specification where Lt does not enter the short rate directly, does not affect the dynamics
of Ft and its shocks are uncorrelated to Ft shocks. We took this approach because it identified the latent Lt solely to price
deviations in the cross-section of bond ages that cannot be linked to cash flow differences. This eases the interpretation of
the evidence as there is no channel through which the filtered value of Lt mix information from the term structure with
information from the cross-section of age. Leaving these channels open would have raised doubts about the source of its
information content for future excess bond returns.

11



filtered factors but with an unrestricted auto-regressive matrix. Using estimates of the restricted VAR

in the paper only makes the evidence stronger since the correlation structure between elements of Xt

is entirely attributed to correlation between innovations. Results are based on returns from the GSW

dataset. The evidence is stronger if we compute returns using discount bond prices from the model. For

completeness, we include innovations to all state variable in the regressions. Finally, very high R2s are not

surprising since the latent system dynamics was obtained by maximizing the conditional log-likelihood of

each monthly yield changes.

G Generalized Nelson-Siegel Representations

G.1 Adding State Variables

We show that the argument in CDR extends easily to the case where the state vector include the

Nelson-Siegel factors, Ft, as well as other factors, Zt, entering the equation for yields.7 This is most easily

seen in a discrete-time version of the model where the vector, Xt = [F ′
t Z ′

t]
′, follows a Gaussian VAR(1)

under Q,

Xt+1 = µQ
x +ΦQ

xXt + ϵQx,t,

with ϵQf,t ∼
Q N(0,Ω), where

µQ
x =

[
µf

µz

]
ΦQ
x =

[
Φf Φf,z

Φz,f Φz

]
Ωx =

[
Ωf Ωf,z

Ωz,f Ωz

]
,

and, therefore, the conditional Laplace transform is

EQ
t

[
exp

{
u′fFt+1 + u′zZt+1

}]
= exp

{
u′xΩux

2
+ u′x(µ

Q
x +ΦQ

xXt)

}
.

Suppose that the short rate is given by

rt = y
(1)
t = δ′fFt + δ′zZt,

then the price of a zero-coupon bond price with maturity m = 1, 2, . . . is

P
(m)
t = exp

{
A(m) +Bf (m)′Ft +Bz(m)′Zt

}
with coefficients given by the following recursions

A(m+ 1) = A(m) +B(m)′µQ
x +

Bx(m)′ΩBx(m)

2
(23)

Bf (m+ 1) = ΦQ′

f Bf (m) + ΦQ′

z,fBz(m)− δf (24)

Bz(m+ 1) = ΦQ′

f,zBf (m) + ΦQ′
z Bz(m)− δz (25)

7The discussion in this Section follows from comments and suggestions from Bruno Feunou.
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with A(0) = Bf (0) = Bz(0) = 0. Suppose that ΦQ
z,f = 0. Then, if δf and ΦQ

f are restricted to

δf =

 1
1−e−λ

λ
1−e−λ

λ − e−λ


′

ΦQ
f =

 1 0 0

0 e−λ λe−λ

0 0 e−λ

 , (26)

respectively, then b(m) = −B(m)/m corresponds to Nelson-Siegel loadings as in Equation 4 but for integer

m = 1, 2, 3, . . .. Moreover, we recover the same constant as in Equation 6 (i.e. ã(m)) by imposing Ωz,f =

Ωf,z = 0 so that innovations to Ft and Zt are uncorrelated (and we still assume µQ = 0 for identification

purposes). This corresponds to the model estimated in the paper.

G.2 Change of Measure

Assume, further, that the state vector also follows a Gaussian VAR(1) dynamics under P with param-

eters µ, Φx and Ω. This is equivalent to choosing a log-normal pricing kernel,

Mt+1 = exp

{
−rt −

1

2
η′Ωη − η′ (ϵt+1 − ηt)

}
,

with linear prices of risk, ηt,

ηt = Σ(η0 + ηXt) ,

where Ω = ΣΣ′. Prices of risk parameters are given by

η0 =Σ−1
(
µ− µQ

)
η =Σ−1

(
Φx − ΦQ

x

)
. (27)

While the dynamics under the historical measure is left unrestricted, as in CDR, the dynamics under Q is

restricted (i.e. ΦQ
z,f = 0 and ΦQ

f is given by Equation 26). Then, for any configuration of parameters µx,

Φx and Ω, Equation 27 shows what price of risk parameters are consistent with a yield equation where

loadings on Ft are given by the Nelson-Siegel representation. In particular, the restrictions Ωz,f = Ωf,z = 0

imply that ηf,z and ηz,f are redundant since shocks to Zt are not sources of risk in this case.

G.3 Span Restrictions for Zt

The general case allows Zt to enter the equation for yields. Following Duffee (2011), we can easily

derive conditions under which Zt is not spanned by the yield curve and remains hidden. We maintain the

assumptions made above to ensure that Ft enter the yield curve with NS loading. Looking back at the

recursions in Equation 23, it is easy to see that Zt does not enter the yield curve (i.e. Bz(m) = 0 for any

m ≥ 0) if and only if δz = 0 and ΦQ
f,z = 0. In particular, the restrictions can be satisfied irrespective of the

historical dynamics for an appropriate choice of the price of risk parameters.[
ηf ηf,z

ηz,f ηz

]
=

[
Σf Σf,z

Σz,f Σz

]−1([
ΦQ
f 0

0 ΦQ
z

]
−

[
Φf Φf,z

Φz,f Φz

])
, (28)
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Next, consider the case estimated in the paper. We have that Zt = lt is univariate and,

ηf = Σ−1
f

(
ΦQ
f − Φf

)
ηl = σ−1

l

(
ΦQ
l − ϕl

)
. (29)

H Kalman Filtering and Missing Factors

Relative to the general framework abvove, the paper imposes the following restrictions,

ΦQ
z,f = ΦQ

z,f = 0

and

δz = 0 ΦP
z,f = ΦP

z,f = 0

on the Q-dynamics and the P dynamics, respectively. It also imposes that Ωf,z = 0. We treat these

restrictions in turns.

H.1 Effect of Ωf,z = 0

This restriction is harmless and can be seen as a rotation of the innovations. The required rotation

from an arbitrary unrestricted matrix Ωx is not unique. In particular, we can choose a rotation that leaves

either ϵft+1 or ϵzt+1 unchanged. Define the matrix Ā,

Ā =

[
Inf

Ωf,zΩ
−1
z

0 Inz

]
.

Then, the transformed innovations, Ā−1ϵt+1, have a block diagonal covariance matrix given by

Ā−1Ωx(Ā
−1)′ =

[
Ωf − Ωf,zΩ

−1
z 0

0 Ωz

]
.

This particular rotation leaves the innovation of Zt unchanged but re-define the innovations to the term

structure factors as the residuals from a projection.

H.2 Effect of δz, Φ
P
f,z = 0 and ΦQ

f,z = 0

This restrictions affects the Kalman filter substantially. With no loss of generality, we consider a filter

for the centered state vector Xt − X̄,

(Xt+1 − X̄) = Φx(Xt − X̄) + ϵt+1,

where, as above, ϵt+1 has a block diagonal covariance matrix, Ω. The initial values for the filter are

F̂0|0 = E[Ft] = F̄ and Qf
0|0 = Λf , (30)
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where vec(Λf ) = (I −Φf ⊗Φ′
f )

−1vec(Ωf ) is the (true) unconditional variance of Ft. The Kalman forecast

is given by

F̂1|0 = F̄ +Φf (F̂0|0 − F̄ ),

although the unrestricted forecast should account for the lagged effect of Zt. The associated Mean Squared

Error is,

Qf
1|0 = E

[(
F1 − F̂1|0

)(
F1 − F̂1|0

)′]
= [Φf Φf,z]Q

x
0|0 [Φf Φf,z]

′ +Ωf ,

where Qx
0|0 = Λ is the long-run covariance matrix of Xt. Parameters associated with Zt play a role in

the MSE for F̂t+1|t because of the omitted term in the forecast step. Next, the predicted yields in the

measurement equations are given by

Ŷ1|0 = A(λ,Ωf ) +Bf (λ)
′F̂1|0,

although the unrestricted prices should account for the effect of Zt+1. It follows from standard results that

the optimal linear update, F̂1|1, is given by,

F̂1|1 = F̂1|0 + E

[(
F1 − F̂1|0

)(
Y1 − Ŷ1|0

)′]
E

[(
Y1 − Ŷ1|0

)(
Y1 − Ŷ1|0

)′]−1

×
(
Y1 − Ŷ1|0

)
. (31)

where we can evaluate each term in turns. The measurement errors are,

Y1 − Ŷ1|0 = Bf (λ)
′(F1 − F̂1|0) +Bz(Θ)′Z1 + ν1,

which include the usual measurement errors, ν1, and the state forecast errors, (F1− F̂1|0), as well as a new

term omitted from the yield equation, Bz(Θ)′Z1. This term arises because of the restrictions that Zt is

unspanned (i.e. ΦQ
f,z = 0 and δz = 0). The covariance term is given by,

E

[(
F1 − F̂1|0

)(
Y1 − Ŷ1|0

)′]
= [Φf Φf,z]Q

x
0|0Φ

′
xBx(θ) + ΩfBf (λ)

= SfΦxQ
x
0|0Φ

′
xBx(θ) + SfΩxBx(θ) (32)

where Sf = [If 0f,z] is a selection matrix such that SfΦx = [Φf Φf,z] and SfΩxBx(θ) = ΩfBf (λ) (using

the fact that Ωx is block diagonal). The variance term is given by,

Ry
1|0 = E

[(
Y1 − Ŷ1|0

)(
Y1 − Ŷ1|0

)′]
= Bx(θ)

′ [ΦxQ0|0xΦ
′
x +Ωx

]
Bx(θ) +R, (33)

where, again, R = var(ν1) is the measurement error variance.
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H.3 What Can Latent Factor Pick Up

As implemented, the Kalman filter of F̂t|t captures some of the effect of Zt on yields and we have

that F̃t|t ̸= E [Ft|Y1:t]. But this is what latent factors should do. We expect filtered values to capture

most of that effect and that F̃t|t is a mixture of Ft and Zt. Recall that almost all yield variations are

interpreted in terms of level, slope and curvature factors, respectively. This interpretation comes from the

patterns of yield loadings on each factor across different maturities. This suggests that the loadings of

actual economic variables on yields can be described as a linear combination of level, slope and curvature

loadings. Formally, this assumption requires that the column of Bz(θ) are (approximately) spanned by the

columns of Bf (λ) and we have,

Bz(θ) = Cz,fBf (λ), (34)

where Cz,f is aNz×Nf matrix. Note that this can only be the case ifNz ≤ Nf or, else, if rank(Bz(θ)) < Nz.

This is not an issue since we are primarily concerned with the case Nz = 1. In the simplest cases, inflation

is often associated with level loadings and output gap with slope loadings. Here, we allow for the loadings

on liquidity to combine level, slope and curvature effects via the Cz,f matrix.

Consider again the covariance term in Equation 32. We can write,

E

[(
F1 − F̂1|0

)(
Y1 − Ŷ1|0

)′]
=
(
Qf

1|0 +Qf,z
1|0Cz,f

)
Bf (λ), (35)

and the optimal covariance is available to the actual Kalman filter implementation by taking,

Q̃f
1|0 = Qf

1|0 +Qf,z
1|0Cz,f = Φf Q̃

f
0|0Φ

′
f + Ω̃f , (36)

and this has tight implication for the choice of Ω̃f . From the forecast rule for Qx
1|0, we get that

Ω̃f = Ωf +Φf,zQ
z,f
0|0Φ

′
f +ΦfQ

f,z
0|0Φf,z +Φf,zQ

z
0|0Φf,z + [ΦfΦz,f ]Q

x
0|0 [ΦfΦz,f ]

′Cz,f , (37)

which shows that Ω̃f combines the true covariance matrix of Ft with terms arising from omitting the effect

of Zt in (i) the forecast of F̂1|0 and (ii) in the yield equation. For consistency, we have that

vec(Q̃f
0|0) =

(
I − Φf ⊗ Φ′

f

)−1
vec(Ω̃f ).

Clearly, omitting Zt biases parameter estimates. Equation 36 shows that one biased estimate of Ωf delivers

the optimal covariance matrix for the update step. The remaining question is whether the resulting (biased)

filter captures the missing factor in yields. The update stage is given by,

F̂1|1 = F̂1|0 + Q̃f
1|0BF (λ)

[
BF (λ)

′Q̃f
1|0BF (λ) +R

]−1
×Bf (λ)

′(F1 − F̂1|0) +Bf (λ)
′C ′

z,fZ1 + ν1, (38)

where R is an order of magnitude lower than BF (λ)
′Q̃f

1|0BF (λ) in typical term structure applications.
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Then, approximately when R is close to zero, we have that,

F̂1|1 ≈ F̂1|0 + (F1 − F̂1|0) + C ′
z,kZ1 = F1 + C ′

z,kZ1,

and, therefore, innovations from F̂t|t to F̂t+1|t+1 combines innovations in the underlying Ft+1 and Zt+1.
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